Sezimal | Digits and Symbols | Shastadari Units System | Base Units | Prefixes | Time Units | Derived Units | Other Units | Fractions | Scales | Calendar | Calculator | Now | Brazileru | Português

Sezimal Digits

and other symbols

The sezimal digits 󱸀󱸁󱸂󱸃󱸄󱸅 are numeric representations of the same values as the hindu-arabic digits 012345, but with a distinct visual identity that conveys imediately that the number is expressed in sezimal base.

They are formed within a triangular matrix containing the values 1, 2 and 2, as shown in the illustration above; each digit has a certain characteristic trait that “embraces” or “points to” the values that sum up it’s own numeric value;

Zero

      

Zero does not “embrace” any value on the original matrix, therefore, it’s only a centralized point; as this point alone would be rather difficult to parse among the other digits, we emphasize the point with a ring, giving the digit a more traditional “zero” apearance;

One

One “embraces” it’s corresponding value on the original matrix; it’s cup is open, and it’s stem sits at the right of the cup, indicating that the “embraced” value is only the superior left one;

Two

Two “embraces” it’s corresponding value on the original matrix, as does one; it’s cup is open, and it’s stem sits at the left of the cup, indicating that the “embraced” value is only the superior right one;

Three

Three “embraces” the sum of it’s corresponding value on the original matrix; it’s cup is closed, and it’s stem centralized, indicating that the “embraced” values are both the superior ones;

Four

Four “point to” and “embraces” the sum of it’s corresponding value on the original matrix; it’s right superior edge “points to” exactly the right superior value on the original matrix, and it’s inferior cup “embraces” the complementing value of it’s sum;

Five

Five “embraces” at the same time all three points of the original matrix, summing up to it’s own value;

Punctuation and other symbols

Wedge ― Sezimal Separator

The wedge, or sezimal separator, divides the number between it’s integer part to the left and it’s fractional part to the right, the same way the full stop in English, or the comma in Portuguese, French, etc. work in the decimal base;

Repeating Separator

The repeating separator shows that the fractional part to it’s right repeats indefinitely, it’s a recurring sezimal; traditionally, this is indicated with a vinculum, a horizontal line above the repeating digits: 󱸀‍󱹯‍󱸁󱸂󱸃 0‍󱹯‍123 0.1̅2̅3̅;

The same technique for representing fractions that repeat can be used with the traditional separators, so . → ‥ and , → „

Shadara Separator

The shadara separator marks the separation of groups of digits within a number, by each six digits, i.e., 󱸁󱸀󱸥󱸤 10¹⁰, 󱸁󱸀󱸦󱸤 10²⁰ etc.; visually, it has the same shape as the wedge/sezimal separator, only smaller, and pointing downwards from the top of the line;

Arda Separator

The arda separator marks the separation of groups of digits within a number, by each six digits, starting from the third digit, i.e., 󱸁󱸀󱸧 10³, 󱸁󱸀󱸦󱸧 10¹³ etc.; visually, it’s a space narrower than the regular space the separates words, the point shown on the illustration just indicates the space occupied by the separator; if there are only four digits to group, then the arda separator would isolate just one digit to the left of it, and, in this circumstance, it can be ommited; this option is used throughout the work presented on this website;

“Per Nif” and “Per Arda” Symbols

      

They work the same way as the % on the decimal base, and may, naturally, be replaced by simply using p/n for ‍󱹱‍ and p/a for ‍󱹲‍;

We can extend the concept to make more symbols: 󱹰 per six, ‍󱹳‍ per six arda, ‍‍󱹴‍‍ per nif arda, 󱹵 per shadara etc.;

Coin Wedge ― Sezimal Separator for Decimal Currency

The wedge with a small circle above, representing a coin, divides a number representig an amount in a decimal currency between it’s integer part to the left and it’s fractional part to the right, like dollars and cents, euros and cents, pounds and pence etc., where each unit is converted independently, so a decimal currency amount of $/€/£ 10.10 (decimal ten dollars/euros/pounds and ten cents/pence) is displayed as $/€/£ 14‍󱹶‍14; this is used to avoid any conversion losses in dealing with real world decimal currencies, while still notating them in sezimal;

The same technique for representing a decimal relation between integer and fraction parts can be used with the traditional separators, so . → ; and , → ;

Time Wedge ― Sezimal Separator for Time Units

The wedge with a dot above serves as subdivision of a fraction units, most used to separate time units, that are fractions of a day, and fractions among themselves: 55‍󱹷‍55‍󱹷‍55, like regular time 24:59:59 or 12:59:59;

If you don’t have access to it, just use the regular colon: 55:55:55;

Base Nif

Base nif, or base thirty-six, is a positional number notation, like sezimal and decimal, but uses thirty-six as it’s base; as nif is six squared, it’s possible to “compress” a sezimal number, two by two digits, into a niftimal number:

00 – 010 – 620 – C30 – I40 – O50 – U
01 – 111 – 721 – D31 – J41 – P51 – V
02 – 212 – 822 – E32 – K42 – Q52 – W
03 – 313 – 923 – F33 – L43 – R53 – X
04 – 414 – A24 – G34 – M44 – S54 – Y
05 – 515 – B25 – H35 – N45 – T55 – Z

Using letters to represent the numbers above nine is the most common practice, but here we propose another way to represent niftimal digits, shown here in sezimal and hindu-arabic digits:

00 – 󱸀 / 010 – 󱸆 / 0̇20 – 󱸌 / 0̈30 – 󱸒 / 0̊40 – 󱸘 / 0̄50 – 󱸞 / 0̆
01 – 󱸁 / 111 – 󱸇 / 1̇21 – 󱸍 / 1̈31 – 󱸓 / 1̊41 – 󱸙 / 1̄51 – 󱸟 / 1̆
02 – 󱸂 / 212 – 󱸈 / 2̇22 – 󱸎 / 2̈32 – 󱸔 / 2̊42 – 󱸚 / 2̄52 – 󱸠 / 2̆
03 – 󱸃 / 313 – 󱸉 / 3̇23 – 󱸏 / 3̈33 – 󱸕 / 3̊43 – 󱸛 / 3̄53 – 󱸡 / 3̆
04 – 󱸄 / 414 – 󱸊 / 4̇24 – 󱸐 / 4̈34 – 󱸖 / 4̊44 – 󱸜 / 4̄54 – 󱸢 / 4̆
05 – 󱸅 / 515 – 󱸋 / 5̇25 – 󱸑 / 5̈35 – 󱸗 / 5̊45 – 󱸝 / 5̄55 – 󱸣 / 5̆

For the digits of the +10 column, one dot above; +20, two dots; +30, a small circle, like the upper part of the digit 󱸃; +40, a small horizontal line, like the upper part of the digit 󱸄; finally, +50, a small bow, the bottom part of a circle, as the start of the upper part of the digit 󱸅.

Yet another option, taking the base shape of the sezimal digits, but written half height, like lower case letters:

00 – o10 – ȯ20 – ö30 – o̊40 – ō50 – ŏ
01 – u11 – u̇21 – ü31 – ů41 – ū51 – ŭ
02 – ɔ12 – ɔ̇22 – ɔ̈32 – ɔ̊42 – ɔ̄52 – ɔ̆
03 – ⱷ13 – ⱷ̇23 – ⱷ̈33 – ⱷ̊43 – ⱷ̄53 – ⱷ̆
04 – z14 – ż24 – z̈34 – z̊44 – z̄54 – z̆
05 – e15 – ė25 – ë35 – e̊45 – ē55 – ĕ

Sezimal Font

All special sezimal characters used on this work are available on a customized build of the Iosevka Font; you can download a full monotype version from here and a quasi-proportional version from here;

If you wish to use them on your own website, you’re free to use the following code:

<link rel="stylesheet" type="text/css" href="https://midia.tauga.online/fonts/iosevka/font-iosevka-qp.css" />

<link rel="stylesheet" type="text/css" href="https://midia.tauga.online/fonts/iosevka/font-iosevka-mono.css" />

Use the font-families "Sezimal QP" for the quasi-proportional version and "Sezimal Mono" for the monotype version;

The table below shows all added characters to the original Iosevka font, in order from top to bottom, left to right, and the presented order is also the standard sorting order proposed for the characters:

F1E0F1E1F1E2F1E3F1E4F1E5F1E6F1E7
0󱸀󱸐󱸠󱸰󱹀󱹐󱹠󱹰
1󱸁󱸑󱸡󱸱󱹁󱹑󱹡‍󱹱‍
2󱸂󱸒󱸢󱸲󱹂󱹒󱹢‍󱹲‍
3󱸃󱸓󱸣󱸳󱹃󱹓󱹣‍󱹳‍
4󱸄󱸔󱸤󱸴󱹄󱹔󱹤‍‍󱹴‍‍
5󱸅󱸕󱸥󱸵󱹅󱹕󱹥󱹵
6󱸆󱸖󱸦󱸶󱹆󱹖󱹦‍󱹶‍
7󱸇󱸗󱸧󱸷󱹇󱹗󱹧
8󱸈󱸘󱸨󱸸󱹈󱹘󱹨
9󱸉󱸙󱸩󱸹󱹉󱹙󱹩
A󱸊󱸚󱸪󱸺󱹊󱹚󱹪
B󱸋󱸛󱸫󱸻󱹋󱹛󱹫
C󱸌󱸜󱸬󱸼󱹌󱹜‍󱹬‍
D󱸍󱸝󱸭󱸽󱹍󱹝‍󱹭‍
E󱸎󱸞󱸮󱸾󱹎󱹞‍󱹮‍
F󱸏󱸟󱸯󱸿󱹏󱹟‍󱹯‍

Digits’ Codepoints

DESCRIPTIONNORMALSUPERSCRIPTSUBSCRIPT
SEZIMAL DIGIT ZERO󱸀󱸤󱹈
F1E00F1E24F1E48
SEZIMAL DIGIT ONE󱸁󱸥󱹉
F1E01F1E25F1E49
SEZIMAL DIGIT TWO󱸂󱸦󱹊
F1E02F1E26F1E4A
SEZIMAL DIGIT THREE󱸃󱸧󱹋
F1E03F1E27F1E4B
SEZIMAL DIGIT FOUR󱸄󱸨󱹌
F1E04F1E28F1E4C
SEZIMAL DIGIT FIVE󱸅󱸩󱹍
F1E05F1E29F1E4D
NIFTIMAL DIGIT SIX󱸆󱸪󱹎
F1E06F1E2AF1E4E
NIFTIMAL DIGIT SEVEN󱸇󱸫󱹏
F1E07F1E2BF1E4F
NIFTIMAL DIGIT EIGHT󱸈󱸬󱹐
F1E08F1E2CF1E50
NIFTIMAL DIGIT NINE󱸉󱸭󱹑
F1E09F1E2DF1E51
NIFTIMAL DIGIT TEN󱸊󱸮󱹒
F1E0AF1E2EF1E52
NIFTIMAL DIGIT ELEVEN󱸋󱸯󱹓
F1E0BF1E2FF1E53
NIFTIMAL DIGIT TWELVE󱸌󱸰󱹔
F1E0CF1E30F1E54
NIFTIMAL DIGIT DOZEN-ONE󱸍󱸱󱹕
F1E0DF1E31F1E55
NIFTIMAL DIGIT DOZEN-TWO󱸎󱸲󱹖
F1E0EF1E32F1E56
NIFTIMAL DIGIT DOZEN-THREE󱸏󱸳󱹗
F1E0FF1E33F1E57
NIFTIMAL DIGIT DOZEN-FOUR󱸐󱸴󱹘
F1E10F1E34F1E58
NIFTIMAL DIGIT DOZEN-FIVE󱸑󱸵󱹙
F1E11F1E35F1E59
NIFTIMAL DIGIT THIRSY󱸒󱸶󱹚
F1E12F1E36F1E5A
NIFTIMAL DIGIT THIRSY-ONE󱸓󱸷󱹛
F1E13F1E37F1E5B
NIFTIMAL DIGIT THIRSY-TWO󱸔󱸸󱹜
F1E14F1E38F1E5C
NIFTIMAL DIGIT THIRSY-THREE󱸕󱸹󱹝
F1E15F1E39F1E5D
NIFTIMAL DIGIT THIRSY-FOUR󱸖󱸺󱹞
F1E16F1E3AF1E5E
NIFTIMAL DIGIT THIRSY-FIVE󱸗󱸻󱹟
F1E17F1E3BF1E5F
NIFTIMAL DIGIT FOURSY󱸘󱸼󱹠
F1E18F1E3CF1E60
NIFTIMAL DIGIT FOURSY-ONE󱸙󱸽󱹡
F1E19F1E3DF1E61
NIFTIMAL DIGIT FOURSY-TWO󱸚󱸾󱹢
F1E1AF1E3EF1E62
NIFTIMAL DIGIT FOURSY-THREE󱸛󱸿󱹣
F1E1BF1E3FF1E63
NIFTIMAL DIGIT FOURSY-FOUR󱸜󱹀󱹤
F1E1CF1E40F1E64
NIFTIMAL DIGIT FOURSY-FIVE󱸝󱹁󱹥
F1E1DF1E41F1E65
NIFTIMAL DIGIT FIFSY󱸞󱹂󱹦
F1E1EF1E42F1E66
NIFTIMAL DIGIT FIFSY-ONE󱸟󱹃󱹧
F1E1FF1E43F1E67
NIFTIMAL DIGIT FIFSY-TWO󱸠󱹄󱹨
F1E20F1E44F1E68
NIFTIMAL DIGIT FIFSY-THREE󱸡󱹅󱹩
F1E21F1E45F1E69
NIFTIMAL DIGIT FIFSY-FOUR󱸢󱹆󱹪
F1E22F1E46F1E6A
NIFTIMAL DIGIT FIFSY-FIVE󱸣󱹇󱹫
F1E23F1E47F1E6B

Punctuation and Symbols’ Codepoints

DESCRIPTIONSYMBOL
SEZIMAL SHADARA SEPARATOR‍󱹬‍
F1E6C
SEZIMAL ARDA SEPARATOR‍󱹭‍
F1E6D
SEZIMAL SEPARATOR - WEDGE‍󱹮‍
F1E6E
SEZIMAL REPEATING SEPARATOR - DOUBLE WEDGE‍󱹯‍
F1E6F
SEZIMAL PER SIX SYMBOL󱹰
F1E70
SEZIMAL PER NIF SYMBOL‍󱹱‍
F1E71
SEZIMAL PER ARDA SYMBOL‍󱹲‍
F1E72
SEZIMAL PER SIX ARDA SYMBOL‍󱹳‍
F1E73
SEZIMAL PER NIF ARDA SYMBOL‍‍󱹴‍‍
F1E74
SEZIMAL PER SHADARA SYMBOL󱹵
F1E75
SEZIMAL SEPARATOR DECIMAL CURRENCY - COIN WEDGE‍󱹶‍
F1E76
SEZIMAL TIME SEPARATOR - SEMI–WEDGE‍󱹷‍
F1E77